Description du produit | ||||
Stellite™ 21 (previously known as Stellite™ 8) was developed in the mid 1930s as a corrosion resistant CoCr alloy, and rapidly found application as a biocompatible hip implant and denture alloy. Many of the alloys currently used in medical applications are variants of the original Stellite™ 21 composition. It was also one of the first heat-resistant alloys trialled for use in jet engines.
Stellite™ 21 consists of a CoCrMo alloy matrix containing dispersed hard carbides which strengthen the alloy and increase its hardness, but also decrease the ductility. The type, shape, size, and distribution of the carbides is strongly influenced by the processing history of the alloy, and for this reason the mechanical properties of stellite™ 21 are very dependent upon the manufacturing route and any subsequent heat treatments. Due to the low volume fraction of carbides, the Co-based alloy matrix dominates the wear and corrosion properties. Stellite™ 21 has excellent cavitation, galling and metal-to-metal sliding wear resistance, but is not recommended for severe hard particle abrasion. The surface can work harden considerably during wear or even during machining, and the use of correct machining tools and techniques is important to achieve optimal results. Stellite™ 21 has excellent resistance to thermal and mechanical shock. Optimum high temperature strength is obtained by solution heat treatments at 1200-1240°C (2190 - 2265°F) followed by quenching, and aging in the temperature range 700-1150°C (1290-2100°F). Stellite™ 21 can be cast, powder metallurgically processed, or applied as a weld hardfacing. It is recommended for applications involving cavitation, erosion, corrosion and/or high temperatures, such as valve trim for petrochemical and power generation. Due to its good impact resistance, it has been widely used in the building up of forging or hot stamping dies. The oxyacetylene weld deposition method is not recommended for this alloy. |
||||
Généralités | ||||
État du matériau
|
|
|||
Disponibilité
|
|
Available Documents | |||
Technical Datasheet (English)
|
|||
Metals General |
Valeur nominale
|
Unité
|
|
Applicable Specifications
|
|
|
|
Forms Available
|
|
|
|
Metal Type
|
|
|
|
Alloy Identification
|
|
|
|
Metals Type Analysis |
Valeur nominale
|
Unité
|
|
Type Analysis
|
|||
Carbon
|
|
%
|
|
Chromium
|
|
%
|
|
Cobalt
|
|
%
|
|
Molybdenum
|
|
%
|
|
Nickel
|
|
%
|
|
Metals Physical |
Valeur nominale
|
Unité
|
|
Densité
|
|
lb/in³
|
|
Metals Mechanical |
Valeur nominale
|
Unité
|
|
Tensile Strength (Ultimate) 2 (73°F)
|
|
ksi
|
|
Tensile Strength (Yield), 0.2% 2 (73°F)
|
|
ksi
|
|
Tensile Elongation (Break) 2 (73°F)
|
|
%
|
|
Dureté
|
|||
HRC-Scale
|
|
|
|
HV-Scale
|
|
|
|
Module de traction 2 (73°F)
|
|
ksi
|
|
Metals Thermal |
Valeur nominale
|
Unité
|
|
Mean CTE (68 à 212°F)
|
|
in/in/°F
|
|
Conductivité thermique (73°F)
|
|
Btu·in/hr/ft²/°F
|
|
Metals Electrical |
Valeur nominale
|
Unité
|
|
Electrical Resistivity (73°F)
|
|
ohms·cir·mil/ft
|
Remarques |
1Propriétés typiques : elles ne doivent pas être interprétées comme des spécifications. |
2Castings |
UL LLC ©2023. Tous droits réservés.
Les informations présentées sur cette fiche technique ont été obtenues par UL Prospector du producteur du matériau. UL Prospector met tout en œuvre pour garantir l’exactitude de ces données. Cependant, UL Prospector décline toute responsabilité pour les valeurs des données et recommande fortement de valider les différentes données auprès du fournisseur de matériau lors de la sélection finale du matériau. |